Friday 5 February 2010

+ Photographic Developer

In the early days of photography, a wide range of developing agents were used, including chlorohydroquinone, ferrous oxalate[3], hydroxylamine, ferrous lactate, ferrous citrate, Eikonogen, atchecin, antipyrin, acetanilid and Amidol (which unusually required mildly acidic conditions).
Developers also contain water softening agent to prevent calcium scum formation (e.g., EDTA salts, sodium tripolyphosphate, NTA salts, etc.).
Modern lithographic developers contain hydrazine compounds, tetrazolium compounds and other amine contrast boosters to increase contrast without relying on the classic hydroquinone-only lithographic developer formulation. The modern formulae are very similar to rapid access developers (except for those additives) and therefore they enjoy long tray life. However, classic lithographic developers using hydroquinone alone suffers very poor tray life and inconsistent results.

The developer selectively reduces silver halide crystals in the emulsion to metallic silver, but only those having latent image centers created by action of light. The light sensitive layer or emulsion consists of silver halide crystals in a gelatin base. Two photons of light must be absorbed by one silver halide crystal to form a stable two atom silver metal crystal. The developer used generally will only reduce silver halide crystals that have an existing silver crystal. Faster exposure or lower light level films usually have larger grains because those images capture less light.
The areas with the most light exposure use up the tiny amount of developer in the gelatin and stop making silver crystal before the film at that point is totally opaque. The areas that received the least light continue to develop because they haven't used up their developer. There is less contrast, but time is not critical and films from several customers and different exposures will develop satisfactorily.

The time over which development takes place, and the type of developer, affect the relationship between the density of silver in the developed image and the quantity of light. This study is called sensitometry and was pioneered by F Hurter & V C Driffield in the late 1800s.
Standard black and white stock can also be reversal processed to give black and white slides. After 'first development,' the initial silver image is then removed (e.g. using a potassium bichromate/sulfuric acid bleach, which requires a subsequent "clearing bath" to remove the chromate stain from the film). The unfixed film is then fogged (physically or chemically) and 'second-developed'. .
In colour print development, the Cibachrome process also uses a print material with the dye-stuffs present and which are bleached out in appropriate places during developing. The chemistry involved here is wholly different from C41 chemistry; (it uses azo-dyes which are much more resistant to fading in sunlight).
(http://en.wikipedia.org/wiki/Photographic_developer)

No comments:

Post a Comment